AI-Enabled Sensors and Analytical Chemistry for Resource Recovery: Trends and Frontiers in the Circular Economy

Authors

  • Ansar Bilyaminu Adam Department of Chemistry, Federal University Wukari, Taraba State, Nigeria Author
  • Raymond Bwano Donatus Department of Chemistry, Federal University Wukari, Taraba State, Nigeria Author
  • Musa Yahaya Abubakar Department of Industrial Chemistry, Federal University Wukari, Taraba State, Nigeria Author
  • AttahDaniel Emmanuel Ba’aku Department of Chemistry, Federal University Wukari, Taraba State, Nigeria Author
  • Luke Obasi Edmund Department of Chemistry, Federal University Wukari, Taraba State, Nigeria Author

DOI:

https://doi.org/10.64229/96wxng32

Keywords:

Artificial intelligence, Sensors, Analytical chemistry, Resource recovery, Circular economy, Digitalization, Sustainable technologies

Abstract

Shifting to a circular economy requires new ways to recover materials from waste. Waste must be reimagined as a source of value. The core of this change is analytical chemistry, sensor technologies, which detect, quantify and characterise critical resources in a variety of waste streams. Artificial intelligence or AI has become a transformative enabler recently to provide sophisticated solutions for data-driven modelling, predictive analytics, and process optimisation. This review describes the AI-based sensor and analytical chemistry techniques applications in water and wastewater treatment, energy recovery, recovery of critical materials, plastics recycling and biomass valorization. Focus on spectroscopy, chromatography, electroanalysis, and hybrid techniques boosted by machine learning. AI-based sensors development for real-time monitoring and classification also will be discussed and showcased. In addition, the authors point out that digitalization, automation and smart platforms (i.e., IoT integration, cloud-based analytics, digital twins) can lead to fully autonomous recovery systems. It critically examines data quality, reproducibility and standardization, and AI’s energy demand sustainability paradox. In the future, scientists will have next-generation AI models, autonomous laboratories, and quantum computing that will speed up analytical chemistry for resource recovery. This work integrates chemistry, engineering, data science, and policy to support the idea that AI can facilitate a circular economy as well as sustainable resource use and global environmental accountability.

References

[1]Adewusi AO, Asuzu OF, Olorunsogo T, Iwuanyanwu C, Adaga E, Daraojimba DO. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 2024, 21(1), 2276-2285. DOI: 10.30574/wjarr.2024.21.1.0314

[2]Agrawal K, Goktas P, Holtkemper M, Beecks C, Kumar N. AI-driven transformation in food manufacturing: a pathway to sustainable efficiency and quality assurance. Frontiers in Nutrition, 2025, 12, 1553942. DOI: 10.3389/fnut.2025.1553942

[3]Ali KA, Mohin S, Mondal P, Goswami S, Ghosh S, Choudhuri S. Influence of artificial intelligence in modern pharmaceutical formulation and drug development. Future Journal of Pharmaceutical Sciences, 2024, 10(1), 625. DOI: 10.1186/s43094-024-00625-1

[4]Roberts H, Zhang J, Bariach B, Cowls J, Gilburt B, Juneja P, et al. Artificial intelligence in support of the circular economy: ethical considerations and a path forward. AI & society, 2024, 39(3), 1451-1464. DOI: 10.1007/s00146-022-01596-8

[5]Jiao H, Xiong M, Al-Tohamy R, Schagerl M, Kornaros M, Ali SS. Rethinking plastics through microbial biodegradation and circular economy innovation–A review. Environmental Chemistry and Ecotoxicology, 2025, 8, 195-224. DOI: 10.1016/j.enceco.2025.11.009

[6]Ranpara R. Energy-efficient green AI architectures for circular economies through multi-layered sustainable resource optimization framework. ArXiv, 2025. DOI: 10.48550/arxiv.2506.12262

[7]Deveci M, Delen D, Ding W. AI-based decision support systems for sustainable business management under circular economy. Annals of Operations Research, 2024, 342(1), 1-3. DOI: 10.1007/s10479-024-06347-0

[8]Balsi M, Moroni M, Bouchelaghem S. Plastic litter detection in the environment using hyperspectral aerial remote sensing and machine learning. Remote Sensing, 2025, 17(5), 938. DOI: 10.3390/rs17050938

[9]Benedetti M, Lloyd S, Sack S, Fiorentini M. Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 2019, 4(4), 043001. DOI: 10.1088/2058-9565/ab4eb5

[10]Bou-Maroun E. Carbon electrode modified with molecularly imprinted polymers for the development of electrochemical sensor: application to pharmacy, food safety, environmental monitoring, and biomedical analysis. Chemosensors, 2023, 11(11), 548. DOI: 10.3390/chemosensors11110548

[11]Brett CMA, Oliveira-Brett AM. An integrated perspective of electrochemistry teaching in science and technology. Journal of Solid State Electrochemistry, 2023, 28, 1007. DOI: 10.1007/s10008-023-05641-4

[12]Elroi H, Zbigniew G, Agnieszka WC, Piotr S. Enhancing waste resource efficiency: circular economy for sustainability and energy conversion. Frontiers in Environmental Science, 2023, 11, 1303792. DOI: 10.3389/fenvs.2023.1303792

[13]Millán M, Fernández-Marchante CM, Lobato J, Cañizares P, Rodrigo MA. Management of solar energy to power electrochemical wastewater treatments. Journal of Water Process Engineering, 2021, 41, 102056. DOI: 10.1016/j.jwpe.2021.102056

[14]Yee CS, Zahia-Azizan NA, Rahim MHA, Zaini NAM, Raja-Razali RB, Ushidee-Radzi MA, et al. Smart fermentation technologies: Microbial process control in traditional fermented foods . Fermentation, 2025, 11(6), 323. DOI: 10.3390/fermentation11060323

[15]Ellen MacArthur Foundation. Circular economy introduction: Overview, 2022. Available at: https://www.ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview

[16]Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The circular economy - A new sustainability paradigm? Journal of Cleaner Production, 2017, 143, 757–768. DOI: 10.1016/j.jclepro.2016.12.048

[17]Gionfriddo E. ExTech 2023: Celebrating 25 years of innovation in extraction technologies. LCGC North America, 2023, 479. DOI: 10.56530/lcgc.na.vn8774i7

[18]Guo WF, Zhang CX, Ma TT, Liu XY, Chen Z, Li S, et al. Advances in aptamer screening and aptasensors detection of heavy metal ions. Journal of Nanobiotechnology, 2021, 19, 166. DOI: 10.1186/s12951-021-00914-4

[19]Hartzler DA, Bhatt CR, McIntyre DL. Design, construction, and validation of an in-situ groundwater trace element analyzer with applications in carbon storage. Scientific Reports, 2023, 13, 5813. DOI: 10.1038/s41598-023-32788-x

[20]Hong Y, Lee J, Park S, Kim J, Jang K. Next-generation nitrate, ammonium, phosphate, and potassium ion monitoring system in closed hydroponics: review on state-of-the-art sensors and their applications. AgriEngineering, 2024, 6(4), 4786-4811. DOI: 10.3390/agriengineering6040274

[21]Bitam T, Yahiaoui A, Boubiche DE, Martínez-Peláez R, Toral-Cruz H, Velarde-Alvarado P. Artificial intelligence of things for next-generation predictive maintenance. Sensors, 2025, 25(24), 7636. DOI: doi.org/10.3390/s25247636

[22]Ingrao C, Bezama A, Paiano A, Hildebrandt J, Arcidiacono C. A review of the key findings from the special issue on “life cycle sustainability analysis of resource recovery from waste management systems in the context of circular models of the economy and the bioeconomy”. Resources, 2025, 14(3),44. DOI: 10.3390/resources14030044

[23]Artiushenko V, Lang S, Lerez C, Reggelin T, Hackert-Oschätzchen M. Resource-efficient Edge AI solution for predictive maintenance. Procedia Computer Science, 2024, 232, 348-57. DOI: 10.1016/j.procs.2024.01.034

[24]Kalpana D, Prasad SK. Automation in analytical chemistry: The role of AI in chromatography. International Journal of Applied Pharmaceutics, 2024, 16. DOI: 10.22159/ijap.2024v16i3.50290

[25]Kammarchedu V, Asgharian H, Zhou K, Khamsi PS, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. Nanoscale, 2024, 16(27), 12857. DOI: 10.1039/d3nr06137j

[26]Sulthana SF, Sulthana UM, Sulthana SB, Anbazhagan R, Chinthaginjala R, Chitathuru D, et al. Electrochemical sensors for heavy metal ion detection: A systematic review. ACS Omega, 2024, 9(24), 25493-25512. DOI: 10.1021/acsomega.4c00933

[27]Fayyaz A, Baig MA, Waqas M, Liaqat U. Analytical techniques for detecting rare earth elements in geological ores: Laser-induced breakdown spectroscopy (LIBS), MFA-LIBS, thermal LIBS, laser ablation time-of-flight mass spectrometry, energy-dispersive X-ray spectroscopy, energy-dispersive X-ray fluorescence spectrometer, and inductively coupled plasma optical emission spectroscopy. Minerals, 2024, 14(10), 1004. DOI: 10.3390/min14101004

[28]MacLeod BP, Parlane FGL, Morrissey TD, Häse F, Roch LM, Dettelbach KE, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Science Advances, 2020, 6(20), eaaz8867. DOI: 10.1126/sciadv.aaz8867

[29]Madhu M, Santhoshkumar S, Tseng WB, Tseng WL. Maximizing analytical precision: exploring the advantages of ratiometric strategy in fluorescence, Raman, electrochemical, and mass spectrometry detection. Frontiers in Analytical Science, 2023, 3, 1258558. DOI: 10.3389/frans.2023.1258558

[30]Singh YR, Shah DB, Kulkarni M, Patel SR, Maheshwari DG, Shah JS, et al. Current trends in chromatographic prediction using artificial intelligence and machine learning. Analytical Methods, 2023, 15(23), 2785-2797. DOI: 10.1039/D3AY00362K

[31]Melinda V, Williams T, Anderson J, Davies JG, Davis C. Enhancing waste-to-energy conversion efficiency and sustainability through AI integration. International Transactions on Education Technology, 2024, 2(2), 183. DOI: 10.33050/itee.v2i2.597

[32]Bosten E, Chen K, Hellings M, Cabooter D. Artificial Intelligence for method development in liquid chromatography. TrAC Trends in Analytical Chemistry, 2025, 192, 118320. DOI: 10.1016/j.trac.2025.118320

[33]Muzakka KF, Möller S, Kesselheim S, Ebert J, Bazarova A, Hoffmann H, et al. Analysis of Rutherford backscattering spectra with CNN-GRU mixture density network. Scientific Reports, 2024, 14, 16983. DOI: 10.1038/s41598-024-67629-y

[34]OECD AI. Everyone must understand the environmental costs of AI. OECD.AI Policy Observatory, 2024. Available at: https://oecd.ai/en/wonk/understand-environmental-costs(accessed on 5 December 2025)

[35]Onyeaka H, Tamasiga P, Nwauzoma UM, Miri T, Juliet UC, Nwaiwu O, et al. Using artificial intelligence to tackle food waste and enhance the circular economy: maximising resource efficiency and minimising environmental impact: a review. Sustainability, 2023, 15(13), 10482. DOI: 10.3390/su151310482

[36]Sherwani AK, Zakaria KA, Shoaib Alam M, Shafiq-un-Nabi S. HPLC Method Development Exploiting Artificial Intelligence: A Digital Transformation in Pharmaceutical Analysis. African Journal of Biomedical Research, 2025, 28(1S), 1426-1433. DOI: 10.53555/AJBR.v28i1S.4761

[37]Lotfy HM, Erk N, Genc AA, Obaydo RH, Tiris G. Artificial intelligence in chromatography: greenness and performance evaluation of AI-predicted versus in-lab optimized HPLC methods for simultaneous separation of amlodipine, hydrochlorothiazide, and candesartan. Talanta Open, 2025, 11, 100473. DOI: 10.1016/j.talo.2025.100473

[38]Bosten E, Chen K, Hellings M, Cabooter D. Artificial Intelligence for method development in liquid chromatography. TrAC Trends in Analytical Chemistry, 2025, 192, 118320. DOI: 10.1016/j.trac.2025.118320

[39]Adam AB, Donatus RB, Attahdaniel EB, Ataitiya H, Ewenifa OJ, Abubakar MY, et al. AI-driven computational insights into electrochemical energy storage: a review of emerging trends in battery chemistry. Journal of Computational Systems and Applications, 2025, 2(4), 1-9. DOI: 10.64229/3vw8qf18

[40]Ranpara R. Energy-efficient green AI architectures for circular economies through multi-layered sustainable resource optimization framework. ArXiv, 2025. DOI: 10.48550/arXIV.2506.12262

[41]Sagar KSR, Awasthi A, Dwivedi SP, Shrivastava M, Pahwa S, Swathi B, et al. Smart resource management: an innovative way of balancing materials, energy, and waste for a green future. E3S Web of Conferences, 2023, 453, 01037. DOI: 10.1051/e3sconf/202345301037

[42]Sánchez-García E, Martínez-Falcó J, Marco-Lajara B, Manresa-Marhuenda E. Revolutionizing the circular economy through new technologies: A new era of sustainable progress. Environmental Technology & Innovation, 2024, 33, 103509. DOI: 10.1016/j.eti.2023.103509

[43]Sahin E, Arslan NN, Ozdemir D. Unlocking the black box: an in-depth review on interpretability, explainability, and reliability in deep learning. Neural Computing and Applications, 2025, 37(2), 859. DOI: 10.1007/s00521-024-10437-2

[44]Sarswat PK, Singh RS, Pathapati SV. Real time electronic-waste classification algorithms using the computer vision based on convolutional neural network (CNN): Enhanced environmental incentives. Resources, Conservation and Recycling, 2024, 207, 107651. DOI: 10.1016/j.resconrec.2024.107651

[45]Xie ZP, Ji C, Xu LF, Xia MY, Cao HL. Towards an optimized distributed message queue system for AIoT edge computing: a reinforcement learning approach. Sensors, 2023, 23(12), 5447. DOI: 10.3390/s23125447

[46]Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, Junejo A, et al. Advancement in nanomaterials for environmental pollutants remediation: A systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. Journal of Nanobiotechnology, 2024, 22(1), 26. DOI:10.1186/s12951-023-02151-3

[47]Zhang H, Li LJ, Wang CQ, Liu Q, Chen WT, Gao SH, et al. Recent advances in designable nanomaterial-based electrochemical sensors for environmental heavy-metal detection. Nanoscale, 2025, 17, 2386-2407. DOI: 10.1039/D4NR04108A

[48]Snow NH. Reflecting on the influence of the current state of sample preparation on GC. LCGC North America, 2023, 41(11), 454-456. DOI: 10.56530/lcgc.na.ap4671b9

[49]Garrido-Momparler V, Peris M. Smart sensors in environmental/water quality monitoring using IoT and cloud services. Trends in Environmental Analytical Chemistry, 2022, 35, e00173. DOI:10.1016/j.teac.2022.e00173

[50]Srivastava M, Nandan S, Zaidi A, Samani AS, Shukla V, Aslam H, et al. Artificial intelligence driven applications in analytical chemistry, drug discovery, and food science: advancements, outlook, and challenges. ChemistrySelect, 2025, 10(16), e202404446. DOI: 10.1002/slct.202404446

[51]Stoll DR. Troubleshooting odds and ends to close out 2023: questions from the mailbag, and second opinions. LCGC North America, 2023, 41(11), 442-445. DOI: 10.56530/lcgc.na.tt6178t1

[52]Munyao C, Ndia J. Natural language processing with transformer-based models: a meta-analysis. Journal on Artificial Intelligence, 2025, 7(1), 329-346. DOI: 10.32604/jai.2025.069226

[53]Zhuang ZP, Liu XS, Jin J, Li ZW, Liu YH, Tavares A, et al. Prediction, uncertainty quantification, and ANN-assisted operation of anaerobic digestion guided by entropy using machine learning. Entropy, 2025, 27(12), 1233. DOI: 10.3390/e27121233

[54]Yao S, Yu T, Ramos AFV, Zhang Z, Rouzi Z, Rodriguez-Saona L. Toward smart and in-situ mycotoxin detection in food via vibrational spectroscopy and machine learning. Food Chemistry: X, 2025, 31, 103016. DOI: 10.1016/j.fochx.2025.103016

[55]Sulaiman NF, Gunasekaran SS, Zaman HB, Nashruddin SN, Nashruddin SN, Sofiah AG, et al. Advances in catalysis for biodiesel production: Integrating AI-driven optimization and bibliometric insights into renewable energy technologies. Bioresource Technology, 2025, 437, 133088. DOI: 10.1016/j.biortech.2025.133088

[56]Arnaiz A, Guirado-Moreno JC, Guembe-García M, Barros R, Tamayo-Ramos JA, Fernández-Pampín N, et al. Lab-on-a-chip for the easy and visual detection of SARS-CoV-2 in saliva based on sensory polymers. Sensors and Actuators B: Chemical, 2023, 379, 133165. DOI: 10.1016/j.snb.2022.133165

[57]Wright D, Igel C, Samuel G, Selvan R. Efficiency is not enough: A critical perspective of environmentally sustainable AI. ArXiv, 2023. DOI: 10.48550/arXiv.2309.02065

[58]Wu W, Xu H, Zhang D, Mo F. Intelligent chemical purification technique based on machine learning. ArXiv, 2024. DOI: 10.48550/arxiv.2404.09114

[59]Cai ZX, Yang JH, Fang HY, Ji TC, Hu YY, Wang X. Research on waste plastics classification method based on multi-scale feature fusion. Sensors, 2022, 22(20), 7974. DOI:10.3390/s22207974

[60]Jin H, Kong FH, Li XY, Shen J. Artificial intelligence in microplastic detection and pollution control. Environmental Research, 2024, 262, 119812. DOI:10.1016/j.envres.2024.119812

[61]Yu IKM. Chemical sciences, technological innovations, and resource circulation. RSC Sustainability, 2023, 1(7), 1591. DOI: 10.1039/d3su90037a

[62]Zabitler D, Ülker E, Turan K, Erdoğan NÖ, Tığ GA. Electrochemical sensor for biological samples monitoring. Topics in Catalysis, 2025. DOI: 10.1007/s11244-025-02080-5

[63]Zhang H. Application of biosensors in non-invasive blood glucose monitoring. E3S Web of Conferences, 2024, 553, 5001. DOI: 10.1051/e3sconf/202455305001

[64]Yao Y, Ye S. Application of AI in precision fertilization and irrigation management. Journal of Computing and Electronic Information Management, 2025, 16(3), 84-87. DOI:10.54097/j0f2t330

[65]Bhaskar P, Seth N. Environment and sustainability development: A ChatGPT perspective. In book: Applied Data Science and Smart Systems, 2024, 54-62. DOI: 10.1201/9781003471059-8.

[66]Luccioni AS, Strubell E, Crawford K. From efficiency gains to rebound effects: The problem of Jevons' paradox in AI's polarized environmental debate. ArXiv, 2025. DOI: 10.48550/arXiv.2501.16548

[67]Toniato A, Schilter O, Laino T. The role of AI in driving the sustainability of the chemical industry. Chimia, 2023, 77(3), 144-149. DOI: 10.2533/chimia.2023.144

[68]Anitha R, Parthiban A. Smart waste ecosystems under industry 5.0: A framework integrating digital twins, edge-AI, graph theory, and 9R circularity. Results in Engineering, 2025, 28, 107988. DOI: 10.1016/j.rineng.2025.107988

[69]Parsa SM. Physics-informed machine learning meets renewable energy systems: A review of advances, challenges, guidelines, and future outlooks. Applied Energy, 2025, 402, 126925. DOI: 10.1016/j.apenergy.2025.126925

[70]Badidi E. Edge AI and blockchain for smart sustainable cities: Promise and potential. Sustainability, 2022, 14(13), 7609. DOI: 10.3390/su14137609

[71]Sheikh A, Simske SJ, Chong EK. Evaluating artificial intelligence models for resource allocation in circular economy digital marketplace. Sustainability, 2024, 16(23), 10601. DOI: 10.3390/su162310601

[72]Wright D, Igel C, Samuel G, Selvan R. Efficiency is not enough: Environmentally sustainable AI. ArXiv, 2023. DOI: 10.48550/arXiv.2309.02065

[73]Zheng Y, Chen Y, Qian B, Shi X, Shu Y, Chen J. A review on edge large language models: design, execution, and applications. ACM Computing Surveys, 2025, 57(8), 1-35. DOI: 10.1145/3719664

[74]Nguyen VN, Tarełko W, Sharma P, El-Shafay AS, Chen WH, Nguyen PQ, et al. Potential of explainable artificial intelligence in advancing renewable energy: challenges and prospects. Energy & Fuels, 2024, 38(3), 1692-1712. DOI: 10.1021/acs.energyfuels.3c04343

[75]OECD AI. Understanding the environmental costs of AI. OECD.AI Observatory, 2024. Available at: https://oecd.ai/en/wonk/understand-environmental-costs (accessed on 5 December 2025)

[76]Devadas RM, Sowmya T. Quantum machine learning: A comprehensive review of integrating AI with quantum computing for computational advancements. MethodsX, 2025, 14, 103318. DOI:10.1016/j.mex.2025.103318

[77]Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR. Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 2021, 109(3), 247–278. DOI: 10.1109/JPROC.2021.3060483

[78]Snapp KL, Brown KA. Driving school for self-driving labs. Digital Discovery, 2023, 2(5), 1620. DOI: 10.1039/d3dd00150d

[79]Hysmith H, Foadian E, Padhy SP, Kalinin SV, Moore RG, Ovchinnikova OS, et al. The future of self-driving laboratories: from human in the loop interactive AI to gamification. Digital Discovery, 2024, 3(4), 621. DOI: 10.1039/d4dd00040d

[80]Li Y, Chen BQ, Yang SF, Jiao Z, Zhang MC, Yang YM, et al. Advances in environmental pollutant detection techniques: enhancing public health monitoring and risk assessment. Environment International, 2025, 197, 109365. DOI: 10.1016/j.envint.2025.109365

[81]Ananikov VP. Top 20 influential AI-based technologies in chemistry. Artificial Intelligence Chemistry, 2024, 2(2), 100075. DOI: 10.1016/j.aichem.2024.100075

[82]Oualikene-Gonin W, Jaulent M, Thierry JP, Oliveira-Martins S, Belgodere L, Maison P, et al. Artificial intelligence integration in the drug lifecycle and in regulatory science: policy implications, challenges and opportunities. Frontiers in Pharmacology, 2024, 15, 1437167. DOI: 10.3389/fphar.2024.1437167

Downloads

Published

2026-01-09

Issue

Section

Articles

How to Cite

Adam, A. B., Donatus, R. B., Abubakar, M. Y., Ba’aku, A. E., & Edmund, L. O. (2026). AI-Enabled Sensors and Analytical Chemistry for Resource Recovery: Trends and Frontiers in the Circular Economy. Innovative Computing Perspectives, 1(1), 15-30. https://doi.org/10.64229/96wxng32